Coercivity estimates for integro-differential operators
نویسندگان
چکیده
منابع مشابه
Explicit coercivity estimates for the linearized Boltzmann and Landau operators
We prove explicit coercivity estimates for the linearized Boltzmann and Landau operators, for a general class of interactions including any inversepower law interactions, and hard spheres. The functional spaces of these coecivity estimates depend on the collision kernel of these operators. For Maxwell molecules they coincide with the spectral gap estimates. For hard potentials they are stronger...
متن کاملTrace Formulae for Matrix Integro-Differential Operators
where λ is a spectral parameter, Y (x) = [yk(x)]k=1,d is a column vector, Q(x) and M(x, t) are d×d real symmetric matrix-valued functions, and h and H are d×d real symmetric constant matrices. M(x, t) is an integrable function on the set D0 def ={(x, t) : 0≤ t ≤ x ≤ π, x, t ∈ R}, Q ∈ C1[0,π], where C1[0,π] denotes a set whose element is a continuously differentiable function on [0,π]. In partic...
متن کاملPohozaev Identities for Anisotropic Integro-differential Operators
We establish Pohozaev identities and integration by parts type formulas for anisotropic integro-differential operators of order 2s, with s ∈ (0, 1). These identities involve local boundary terms, in which the quantity u/d|∂Ω plays the role that ∂u/∂ν plays in the second order case. Here, u is any solution to Lu = f(x, u) in Ω, with u = 0 in R \ Ω, and d is the distance to ∂Ω.
متن کاملThe analytical solutions for Volterra integro-differential equations within Local fractional operators by Yang-Laplace transform
In this paper, we apply the local fractional Laplace transform method (or Yang-Laplace transform) on Volterra integro-differential equations of the second kind within the local fractional integral operators to obtain the analytical approximate solutions. The iteration procedure is based on local fractional derivative operators. This approach provides us with a convenient way to find a solution ...
متن کاملRegularity estimates for parabolic integro- differential equations and applications
We review some regularity results for integro-differential equations, focusing on Hölder estimates for equations with rough kernels and their applications. We show that if we take advantage of the integral form of the equation, we can obtain simpler proofs than for second order equations. For the equations considered here, the Harnack inequality may not hold. Mathematics Subject Classification ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Calculus of Variations and Partial Differential Equations
سال: 2020
ISSN: 0944-2669,1432-0835
DOI: 10.1007/s00526-020-01764-y